20 research outputs found

    FSS-2019-nCov:A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection

    Get PDF
    The newly discovered coronavirus (COVID-19) pneumonia is providing major challenges to research in terms of diagnosis and disease quantification. Deep-learning (DL) techniques allow extremely precise image segmentation; yet, they necessitate huge volumes of manually labeled data to be trained in a supervised manner. Few-Shot Learning (FSL) paradigms tackle this issue by learning a novel category from a small number of annotated instances. We present an innovative semi-supervised few-shot segmentation (FSS) approach for efficient segmentation of 2019-nCov infection (FSS-2019-nCov) from only a few amounts of annotated lung CT scans. The key challenge of this study is to provide accurate segmentation of COVID-19 infection from a limited number of annotated instances. For that purpose, we propose a novel dual-path deep-learning architecture for FSS. Every path contains encoder–decoder (E-D) architecture to extract high-level information while maintaining the channel information of COVID-19 CT slices. The E-D architecture primarily consists of three main modules: a feature encoder module, a context enrichment (CE) module, and a feature decoder module. We utilize the pre-trained ResNet34 as an encoder backbone for feature extraction. The CE module is designated by a newly introduced proposed Smoothed Atrous Convolution (SAC) block and Multi-scale Pyramid Pooling (MPP) block. The conditioner path takes the pairs of CT images and their labels as input and produces a relevant knowledge representation that is transferred to the segmentation path to be used to segment the new images. To enable effective collaboration between both paths, we propose an adaptive recombination and recalibration (RR) module that permits intensive knowledge exchange between paths with a trivial increase in computational complexity. The model is extended to multi-class labeling for various types of lung infections. This contribution overcomes the limitation of the lack of large numbers of COVID-19 CT scans. It also provides a general framework for lung disease diagnosis in limited data situations

    Deep-IFS:Intrusion Detection Approach for Industrial Internet of Things Traffic in Fog Environment

    Get PDF
    The extensive propagation of industrial Internet of Things (IIoT) technologies has encouraged intruders to initiate a variety of attacks that need to be identified to maintain the security of end-user data and the safety of services offered by service providers. Deep learning (DL), especially recurrent approaches, has been applied successfully to the analysis of IIoT forensics but their key challenge of recurrent DL models is that they struggle with long traffic sequences and cannot be parallelized. Multihead attention (MHA) tried to address this shortfall but failed to capture the local representation of IIoT traffic sequences. In this article, we propose a forensics-based DL model (called Deep-IFS) to identify intrusions in IIoT traffic. The model learns local representations using local gated recurrent unit (LocalGRU), and introduces an MHA layer to capture and learn global representation (i.e., long-range dependencies). A residual connection between layers is designed to prevent information loss. Another challenge facing the current IIoT forensics frameworks is their limited scalability, limiting performance in handling Big IIoT traffic data produced by IIoT devices. This challenge is addressed by deploying and training the proposed Deep-IFS in a fog computing environment. The intrusion identification becomes scalable by distributing the computation and the IIoT traffic data across worker fog nodes for training the model. The master fog node is responsible for sharing training parameters and aggregating worker node output. The aggregated classification output is subsequently passed to the cloud platform for mitigating attacks. Empirical results on the Bot-IIoT dataset demonstrate that the developed distributed Deep-IFS can effectively handle Big IIoT traffic data compared with the present centralized DL-based forensics techniques. Further, the results validate the robustness of the proposed Deep-IFS across various evaluation measures

    Interpretable Deep Learning for Discriminating Pneumonia from Lung Ultrasounds

    Get PDF
    Lung ultrasound images have shown great promise to be an operative point-of-care test for the diagnosis of COVID-19 because of the ease of procedure with negligible individual protection equipment, together with relaxed disinfection. Deep learning (DL) is a robust tool for modeling infection patterns from medical images; however, the existing COVID-19 detection models are complex and thereby are hard to deploy in frequently used mobile platforms in point-of-care testing. Moreover, most of the COVID-19 detection models in the existing literature on DL are implemented as a black box, hence, they are hard to be interpreted or trusted by the healthcare community. This paper presents a novel interpretable DL framework discriminating COVID-19 infection from other cases of pneumonia and normal cases using ultrasound data of patients. In the proposed framework, novel transformer modules are introduced to model the pathological information from ultrasound frames using an improved window-based multi-head self-attention layer. A convolutional patching module is introduced to transform input frames into latent space rather than partitioning input into patches. A weighted pooling module is presented to score the embeddings of the disease representations obtained from the transformer modules to attend to information that is most valuable for the screening decision. Experimental analysis of the public three-class lung ultrasound dataset (PCUS dataset) demonstrates the discriminative power (Accuracy: 93.4%, F1-score: 93.1%, AUC: 97.5%) of the proposed solution overcoming the competing approaches while maintaining low complexity. The proposed model obtained very promising results in comparison with the rival models. More importantly, it gives explainable outputs therefore, it can serve as a candidate tool for empowering the sustainable diagnosis of COVID-19-like diseases in smart healthcare

    FV-Seg-Net: Fully Volumetric Network for Accurate Segmentation of COVID-19 Lesions from Chest CT Scans

    No full text
    Current pneumonia segmentation approaches lack precision on small infection areas and operate by partitioning the CT volumes into 2D slices or 3D patches, leading to the loss of contextual information. We propose an improved fully volumetric segmentation network, called FV-SEG-Net, that effectively exploits the local and global spatial information and enables the entire CT volume processing. The encoder network is implemented with 3D ResNeXt. The decoder is designed using a computationally efficient recalibrated anisotropic convolution (RAC) module to acquire the 3D semantic representation of the CT volumes with anisotropic resolution. To avoid losing information during down-sampling, we reconstruct the skip- connection using a multi-level multi-scale pyramid aggregation (MPA) module and ensure more effective context fusion that improves the reconstruction decoder capability. Empirical investigations demonstrate that FV-SEG-Net has an excellent performance in segmenting COVID-19 lesions with a Dice score of 78.58% and a surface-Dice score of 80.1% outperforming current cutting-edge approaches

    Collaborative Screening of COVID-19-like Disease from Multi-Institutional Radiographs: A Federated Learning Approach

    No full text
    COVID-19-like pandemics are a major threat to the global health system have the potential to cause high mortality across age groups. The advance of the Internet of Medical Things (IoMT) technologies paves the way toward developing reliable solutions to combat these pandemics. Medical images (i.e., X-rays, computed tomography (CT)) provide an efficient tool for disease detection and diagnosis. The cost, time, and efforts for acquiring and annotating, for instance, large CT datasets make it complicated to obtain large numbers of samples from a single institution. However, owing to the necessity to preserve the privacy of patient data, it is challenging to build a centralized dataset from many institutions, especially during a pandemic. Moreover, heterogeneity between institutions presents a barrier to building efficient screening solutions. Thus, this paper presents a fog-based federated generative domain adaption framework (FGDA), where fog nodes aggregate patients’ data necessary to collaboratively train local deep-learning models for disease screening in medical images from different institutions. Local differential privacy is presented to protect the local gradients against attackers during the global model aggregation. In FGDA, the generative domain adaptation (DA) method is introduced to handle data discrepancies. Experimental evaluation on a case study of COVID-19 segmentation demonstrated the efficiency of FGDA over competing learning approaches with statistical significance

    RCTE:A reliable and consistent temporal-ensembling framework for semi-supervised segmentation of COVID-19 lesions

    No full text
    The segmentation of COVID-19 lesions from computed tomography (CT) scans is crucial to develop an efficient automated diagnosis system. Deep learning (DL) has shown success in different segmentation tasks. However, an efficient DL approach requires a large amount of accurately annotated data, which is difficult to aggregate owing to the urgent situation of COVID-19. Inaccurate annotation can easily occur without experts, and segmentation performance is substantially worsened by noisy annotations. Therefore, this study presents a reliable and consistent temporal-ensembling (RCTE) framework for semi-supervised lesion segmentation. A segmentation network is integrated into a teacher-student architecture to segment infection regions from a limited number of annotated CT scans and a large number of unannotated CT scans. The network generates reliable and unreliable targets, and to evenly handle these targets potentially degrades performance. To address this, a reliable teacher-student architecture is introduced, where a reliable teacher network is the exponential moving average (EMA) of a reliable student network that is reliably renovated by restraining the student involvement to EMA when its loss is larger. We also present a noise-aware loss based on improvements to generalized cross-entropy loss to lead the segmentation performance toward noisy annotations. Comprehensive analysis validates the robustness of RCTE over recent cutting-edge semi-supervised segmentation techniques, with a 65.87% Dice score
    corecore